
wheelfile

MrMino

Aug 06, 2021





CONTENTS

1 Installation 3

2 Main class 5

3 Metadata classes 11

4 Exceptions 17

Python Module Index 19

Index 21

i



ii



wheelfile

API for handling “.whl” files.

Use WheelFile to create or read a wheel.

Managing metadata is done via metadata, wheeldata, and record attributes. See MetaData, WheelData, and
WheelRecord for documentation of the objects returned by these attributes.

Example

Here’s how to create a simple package under a specific directory path:

with WheelFile('path/to/directory/', mode='w'
distname="mywheel", version="1") as wf:

wf.write('path/to/a/module.py', arcname="mywheel.py")

CONTENTS 1



wheelfile

2 CONTENTS



CHAPTER

ONE

INSTALLATION

To be able to use the module, you have to install it first:

pip install wheelfile

3



wheelfile

4 Chapter 1. Installation



CHAPTER

TWO

MAIN CLASS

class wheelfile.WheelFile(file_or_path: Union[str, pathlib.Path, BinaryIO] = './', mode: str = 'r', *, distname:
Optional[str] = None, version: Optional[Union[str, packaging.version.Version]] =
None, build_tag: Optional[Union[int, str]] = None, language_tag: Optional[str]
= None, abi_tag: Optional[str] = None, platform_tag: Optional[str] = None)

An archive that follows the wheel specification.

Used to read, create, validate, or modify .whl files.

Can be used as a context manager, in which case close() is called upon exiting the context.

filename
Path to the file, if the instance was initialized with one, otherwise None.

Type str

distname
Name of the distribution (project). Either given to __init__() explicitly or inferred from its file_or_path
argument.

Type str

version
Version of the distribution. Either given to __init__() explicitly or inferred from its file_or_path argument.

Type packaging.version.Version

build_tag
Distribution’s build number. Either given to __init__() explicitly or inferred from its file_or_path argument,
otherwise None in lazy mode.

Type Optional[int]

language_tag
Interpretter implementation compatibility specifier. See PEP-425 for the full specification. Either given to
__init__() explicitly or inferred from its file_or_path argument otherwise an empty string in lazy mode.

Type str

abi_tag
ABI compatibility specifier. See PEP-425 for the full specification. Either given to __init__() explicitly or
inferred from its file_or_path argument, otherwise an empty string in lazy mode.

Type str

platform_tag
Platform compatibility specifier. See PEP-425 for the full specification. Either given to __init__() explicitly
or inferred from its file_or_path argument, otherwise an empty string in lazy mode.

Type str

5



wheelfile

record
Current state of .dist-info/RECORD file.

When reading wheels in lazy mode, if the file does not exist or is misformatted, this attribute becomes
None.

In non-lazy modes this file is always read & validated on initialization. In write and exclusive-write modes,
written to the archive on close().

Type Optional[WheelRecord]

metadata
Current state of .dist-info/METADATA file.

Values from distname and version are used to provide required arguments when the file is created from
scratch by __init__().

When reading wheels in lazy mode, if the file does not exist or is misformatted, this attribute becomes
None.

In non-lazy modes this file is always read & validated on initialization. In write and exclusive-write modes,
written to the archive on close().

Type Optional[MetaData]

wheeldata
Current state of .dist-info/WHEELDATA file.

Values from build_tag, language_tag, abi_tag, platform_tag, or their substitutes inferred from the filename
are used to initialize this object.

When reading wheels in lazy mode, if the file does not exist or is misformatted, this attribute becomes
None.

In non-lazy modes this file is always read & validated on initialization. In write and exclusive-write modes,
written to the archive on close().

Type Optional[WheelData]

closed
True if the underlying ZipFile object is closed, false otherwise.

Type bool

__init__(file_or_path: Union[str, pathlib.Path, BinaryIO] = './', mode: str = 'r', *, distname: Optional[str]
= None, version: Optional[Union[str, packaging.version.Version]] = None, build_tag:
Optional[Union[int, str]] = None, language_tag: Optional[str] = None, abi_tag: Optional[str] =
None, platform_tag: Optional[str] = None)→ None

Open or create a wheel file.

In write and exclusive-write modes, if file_or_path is not specified, or the specified path is a directory,
the wheelfile will be created in the current working directory, with filename generated using the values
given via distname, version, build_tag, language_tag, abi_tag, and platfrom_tag arguments. Each of these
parameters is stored in a read-only property of the same name.

If lazy mode is not specified:

• In read and append modes, the file is validated using validate(). Contents of metadata files inside
.dist-info directory are read and converted into their respective object representations (see “metadata”,
“wheeldata”, and “record” attributes).

• In write and exclusive-write modes, object representations for each metadata file are created from
scratch. They will be written to each of their respective .dist-info/ files on close().

6 Chapter 2. Main class



wheelfile

To skip the validation, e.g. if you wish to fix a misformated wheel, use lazy mode (‘l’ - see description of
the “mode” parameter).

In lazy mode, if the opened file does not contain WHEEL, METADATA, or RECORD (which is optional
as per PEP-627), the attributes corresponding to the missing data structures will be set to None.

If any of the metadata files cannot be read due to a wrong format, they are considered missing.

Filename tags are only inferred if the filename contains 5 or 6 segments inbetween ‘-‘ characters. Otherwise,
if any tag argument is omitted, its attribute is set to an empty string.

If the archive root contains a directory with a name ending with ‘.dist-info’, it is considered to be _the_
metadata directory for the wheel, even if the given/inferred distname and version do not match its name.

If the archive already contains either one of the aforementioned files, they are read, but are not checked for
consistency. Use validate() to check whether there are errors, and fix() to fix them.

There are currently 2 classes of errors which completely prevent a well formatted zip file from being read
by this class:

• Unknown/incorrect distribution name/version - when the naming scheme is violated in a way that
prevents inferring these values and the user hasn’t provided these values, or provided ones that do not
conform to the specifications. In such case, the scope of functioning features of this class would be
limited to that of a standard ZipFile, and is therefore unsupported.

• When there are multiple .data or .dist-info directories. This would mean that the class would have to
guess which are the genuine ones - and we refuse the temptation to do that (see “The Zen of Python”).

In other words, this class is liberal in what it accepts, but very conservative in what it does (A.K.A. the
robustness principle).

Note: Despite all of this, THERE ARE NO GUARANTEES being made as to whether a misformatted
file can be read or fixed by this class, and even if it is currently, whether it will still be the case in the future
versions.

Parameters

• file_or_path – Path to the file to open/create or a file-like object to use.

• mode – See zipfile.ZipFile docs for the list of available modes.

In the read and append modes, the file given has to contain proper PKZIP-formatted data.

Adding “l” to the mode string turns on the “lazy mode”. This changes the behavior on
initialization (see above), the behavior of close() (see its docstring for more info), makes
the archive modifying methods refrain from refreshing the record & writing it to the archive.

Lazy mode should only be used in cases where a misformatted wheels have to be read or
fixed.

• distname – Name of the distribution for this wheelfile.

If omitted, the name will be inferred from the filename given in the path. If a file-like object
is given instead of a path, it will be inferred from its “name” attribute.

The class requires this information, as it’s used to infer the name of the directory in the
archive in which metadata should reside.

This argument should be understood as an override for the values calculated from the object
given in “file_or_path” argument. It should only be necessary when a file is read from
memory or has a misformatted name.

7



wheelfile

Should be composed of alphanumeric characters and underscores only. Must not be an
empty string.

See the description of “distname” attribute for more information.

• version – Version of the distribution in this wheelfile. Follows the same semantics as
“distname”.

The given value must be compliant with PEP-440 version identifier specification.

See the description of “version” attribute for more information.

• build – Optional build number specifier for the distribution.

See WheelData docstring for information about semantics of this field.

If lazy mode is not specified, this value must be an integer or a string that converts to one.
Otherwise no checks for this value are performed.

• language_tag – Language implementation specification. Used to distinguish between
distributions targetted at different versions of interpreters.

The given value should be in the same form as the ones appearing in wheels’ filenames.

Defaults to ‘py3’, but only if an unnamed or a directory target was given.

• abi_tag – In distributions that utilize compiled binaries, specifies the version of the ABI
that the binaries in the wheel are compatible with.

The given value should be in the same form as the ones appearing in wheels’ filenames.

Defaults to ‘none’, but only if an unnamed or a directory target was given.

• platform_tag – Used to specify platforms that the distribution is compatible with.

The given value should be in the same form as the ones appearing in wheels’ filenames.

Defaults to ‘any’, but only if an unnamed or a directory target was given.

Raises

• UnnamedDistributionError – Raised if the distname or version cannot be inferred from
the given arguments.

E.g. when the path does not contain the version, or the file-like object has no “name”
attribute to get the filename from, and the information wasn’t provided via other arguments.

• BadWheelFileError – Raised if the archive contains multiple ‘.dist-info’ or ‘.data’ direc-
tories.

• zipfile.BadZipFile – If given file is not a proper zip.

__weakref__
list of weak references to the object (if defined)

close()→ None
Finalize and close the file.

Writes the rest of the necessary data to the archive, performs one last validation of the contents (unless the
file is open in lazy mode), and closes the file.

There must not be any handles left open for the zip contents, i.e. all objects returned by open() or .zip.open()
must be closed before calling this subroutine.

Raises RuntimeError – If there are unclosed content handles.

8 Chapter 2. Main class



wheelfile

write(filename: Union[str, pathlib.Path], arcname: Optional[str] = None, *, recursive: bool = True)→
None

Add the file to the wheel.

Updates the wheel record, if the record is being kept.

Parameters

• filename – Path to the file or directory to add.

• arcname – Path in the archive to assign the file/directory into. If not given, filename will
be used instead. In both cases, the leading path separators and the drive letter (if any) will
be removed.

• recursive – Keyword only. When True, if given path leads to a directory, all of its con-
tents are going to be added into the archive, including contents of its subdirectories.

If its False, only a directory entry is going to be added, without any of tis contents.

write_data(filename: Union[str, pathlib.Path], section: str, arcname: Optional[str] = None, *, recursive:
bool = True)→ None

Write a file to the .data directory under a specified section.

This method is a handy shortcut for writing into <dist>-<version>.data/, such that you dont have to gen-
erate the path yourself.

Updates the wheel record, if the record is being kept.

Parameters

• filename – Path to the file or directory to add.

• section – Name of the section, i.e. the directory inside .data/ that the file should be put
into. Sections have special meaning, see PEP-427. Cannot contain any slashes, nor be
empty.

• arcname – Path in the archive to assign the file/directory into, relative to the directory of
the specified data section. If left empty, filename is used. Leading slashes are stripped.

• recursive – Keyword only. When True, if given path leads to a directory, all of its con-
tents are going to be added into the archive, including contents of its subdirectories.

If its False, only a directory entry is going to be added, without any of tis contents.

writestr(zinfo_or_arcname: Union[zipfile38.ZipInfo, str], data: Union[bytes, str])→ None
Write given data into the wheel under the given path.

Updates the wheel record, if the record is being kept.

Parameters

• zinfo_or_arcname – Specifies the path in the archive under which the data will be stored.

• data – The data that will be writen into the archive. If it’s a string, it is encoded as UTF-8
first.

writestr_data(section: str, zinfo_or_arcname: Union[zipfile38.ZipInfo, str], data: Union[bytes, str])→
None

Write given data to the .data directory under a specified section.

This method is a handy shortcut for writing into <dist>-<version>.data/, such that you dont have to gen-
erate the path yourself.

Updates the wheel record, if the record is being kept.

Parameters

9



wheelfile

• section – Name of the section, i.e. the directory inside .data/ that the file should be put
into. Sections have special meaning, see PEP-427. Cannot contain any slashes, nor be
empty.

• zinfo_or_arcname – Specifies the path in the archive under which the data will be stored.
This is relative to the path of the section directory. Leading slashes are stripped.

• data – The data that will be writen into the archive. If it’s a string, it is encoded as UTF-8
first.

10 Chapter 2. Main class



CHAPTER

THREE

METADATA CLASSES

class wheelfile.WheelRecord(hash_algo: str = 'sha256')
Contains logic for creation and modification of RECORD files.

Keeps track of files in the wheel and their hashes.

For the full spec, see PEP-376 “RECORD” section, PEP-627, “The .dist-info directory” section of PEP-427, and
https://packaging.python.org/specifications/recording-installed-packages/.

__eq__(other)
Return self==value.

__init__(hash_algo: str = 'sha256')

__str__()→ str
Return str(self).

__weakref__
list of weak references to the object (if defined)

property hash_algo: str
Hash algorithm to use to generate RECORD file entries

hash_of(arcpath)→ str
Return the hash of a file in the archive this RECORD describes

Parameters arcpath – Location of the file inside the archive.

Returns String in the form <algorithm>=<base64_str>, where algorithm is the name of the hash-
ing agorithm used to generate the hash (see hash_algo), and base64_str is a string containing
a base64 encoded version of the hash with any trailing ‘=’ removed.

Return type str

update(arcpath: str, buf: IO[bytes])
Add a record entry for a file in the archive.

Parameters buf – Buffer from which the data will be read in HASH_BUF_SIZE chunks. Must
be fresh, i.e. seek(0)-ed.

class wheelfile.WheelData(*, generator: str = 'wheelfile 0.0.5', root_is_purelib: bool = True, tags:
Union[List[str], str] = 'py3-none-any', build: Optional[int] = None)

Implements .dist-info/WHEEL file format.

Descriptions of parameters based on PEP-427. All parameters are keyword only. Attributes of objects of this
class follow parameter names.

Note: Wheel-Version, the wheel format version specifier, is unchangeable. Version “1.0” is used.

11

https://packaging.python.org/specifications/recording-installed-packages/


wheelfile

Parameters

• generator – Name and (optionally) version of the generator that generated the wheel file.
By default, “wheelfile {__version__}” is used.

• root_is_purelib – Defines whether the root of the wheel file should be first unpacked into
purelib directory (see distutils.command.install.INSTALL_SCHEMES).

• tags – See PEP-425 - “Compatibility Tags for Built Distributions”. Either a single string
denoting one tag or a list of tags. Tags may contain compressed tag sets, in which case they
will be expanded.

By default, “py3-none-any” is used.

• build – Optional build number. Used as a tie breaker when two wheels have the same
version.

__eq__(other)
Return self==value.

__init__(*, generator: str = 'wheelfile 0.0.5', root_is_purelib: bool = True, tags: Union[List[str], str] =
'py3-none-any', build: Optional[int] = None)

__str__()→ str
Return str(self).

class wheelfile.MetaData(*, name: str, version: Union[str, packaging.version.Version], summary:
Optional[str] = None, description: Optional[str] = None, description_content_type:
Optional[str] = None, keywords: Optional[Union[List[str], str]] = None, classifiers:
Optional[List[str]] = None, author: Optional[str] = None, author_email:
Optional[str] = None, maintainer: Optional[str] = None, maintainer_email:
Optional[str] = None, license: Optional[str] = None, home_page: Optional[str] =
None, download_url: Optional[str] = None, project_urls: Optional[List[str]] =
None, platforms: Optional[List[str]] = None, supported_platforms:
Optional[List[str]] = None, requires_python: Optional[str] = None, requires_dists:
Optional[List[str]] = None, requires_externals: Optional[List[str]] = None,
provides_extras: Optional[List[str]] = None, provides_dists: Optional[List[str]] =
None, obsoletes_dists: Optional[List[str]] = None)

Implements Wheel Metadata format v2.1.

Descriptions of parameters based on https://packaging.python.org/specifications/core-metadata/. All parameters
are keyword only. Attributes of objects of this class follow parameter names.

All parameters except “name” and “version” are optional.

Note: Metadata-Version, the metadata format version specifier, is unchangable. Version “2.1” is used.

Parameters

• name – Primary identifier for the distribution that uses this metadata. Must start and end
with a letter or number, and consists only of ASCII alphanumerics, hyphen, underscore, and
period.

• version – A string that contains PEP-440 compatible version identifier.

Can be specified using packaging.version.Version object, or a string, where the latter is al-
ways converted to the former.

• summary – A one-line sentence describing this distribution.

12 Chapter 3. Metadata classes

https://packaging.python.org/specifications/core-metadata/


wheelfile

• description – Longer text that describes this distribution in detail. Can be written us-
ing plaintext, reStructuredText, or Markdown (see “description_content_type” parameter be-
low).

The string given for this field should not include RFC 822 indentation followed by a “|”
symbol. Newline characters are permitted

• description_content_type – Defines content format of the text put in the “description”
argument. The field value should follow the following structure:

<type/subtype>; charset=<charset>[; <param_name>=<param value> . . . ]

Valid type/subtype strings are:

– text/plain

– text/x-rst

– text/markdown

For charset parameter, the only legal value is UTF-8.

For text/markdown, parameter “variant=<variant>” specifies variant of the markdown used.
Currently recognized variants include “GFM” and “CommonMark”.

Examples:

Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM

Description-Content-Type: text/markdown

• keywords – List of search keywords for this distribution. Optionally a single string literal
with keywords separated by commas.

Note: despite the name being a plural noun, the specification defines this field as a single-use
field. In this implementation however, the value of the attribute after instance initialization is
a list of strings, and conversions to and from string follow the spec - they require a comma-
separated list.

• classifiers – List PEP-301 classification values for this distribution, optionally followed
by a semicolon and an environmental marker.

Example of a classifier:

Operating System :: Microsoft :: Windows :: Windows 10

• author – Name and, optionally, contact information of the original author of the distribution.

• author_email – Email address of the person specified in the “author” parameter. Format
of this field must follow the format of RFC-822 “From:” header field.

• maintainer – Name and, optionally, contact information of person currently maintaining
the project to which this distribution belongs to.

Omit this parameter if the author and current maintainer is the same person.

• maintainer_email – Email address of the person specified in the “maintainer” parameter.
Format of this field must follow the format of RFC-822 “From:” header field.

Omit this parameter if the author and current maintainer is the same person.

• license – Text of the license that covers this distribution. If license classifier is used, this
parameter may be omitted or used to specify the particular version of the intended legal text.

• home_page – URL of the home page for this distribution (project).

13



wheelfile

• download_url – URL from which this distribution (in this version) can be downloaded.

• project_urls – List of URLs with labels for them, in the following format:

<label>, <url>

The label must be at most 32 characters.

Example of an item of this list:

Repository, https://github.com/MrMino/wheelfile

• platforms – List of strings that signify supported operating systems. Use only if an OS
cannot be listed by using a classifier.

• supported_platforms – In binary distributions list of strings, each defining an operating
system and a CPU for which the distribution was compiled.

Semantics of this field aren’t formalized by metadata specifications.

• requires_python – PEP-440 version identifier, that specifies the set Python language ver-
sions that this distribution is compatible with.

Some package management tools (most notably pip) use the value of this field to filter out
installation candidates.

Example:

~=3.5,!=3.5.1,!=3.5.0

• requires_dists – List of PEP-508 dependency specifiers (think line-split contents of re-
quirements.txt).

• requires_externals – List of system dependencies that this distribution requires.

Each item is a string with a name of the dependency optionally followed by a version (in the
same way items in “requires_dists”) are specified.

Each item may end with a semicolon followed by a PEP-496 environment markers.

• provides_extras – List of names of optional features provided by a distribution. Used
to specify which dependencies should be installed depending on which of these optional
features are requested.

For example, if you specified “network” and “ssh” as optional features, the following re-
quirement specifier can be used in “requires_externals” list to indicate, that the “paramiko”
dependency should only be installed when “ssh” feature is requested:

paramiko; extra == “ssh”

or

paramiko[ssh]

If a dependency is required by multiple features, the features can be specified in a square
brackets, separated by commas:

ipython[repl, jupyter_kernel]

Specifying an optional feature without using it in “requires_externals” is considered invalid.

Feature names “tests” and “doc” are reserved in their semantics. They can be used for de-
pendencies of automated testing or documentation generation.

• provides_dists – List of names of other distributions contained within this one. Each
entry must follow the same format that entries in “requires_dists” list do.

14 Chapter 3. Metadata classes

https://github.com/MrMino/wheelfile


wheelfile

Different distributions may use a name that does not correspond to any particular project, to
indicate a capability to provide a certain feature, e.g. “relational_db” may be used to say that
a project provides relational database capabilities

• obsoletes_dists – List of names of distributions obsoleted by installing this one, indi-
cating that they should not coexist in a single environment with this one. Each entry must
follow the same format that entries in “requires_dists” list do.

__eq__(other)
Return self==value.

__init__(*, name: str, version: Union[str, packaging.version.Version], summary: Optional[str] = None,
description: Optional[str] = None, description_content_type: Optional[str] = None, keywords:
Optional[Union[List[str], str]] = None, classifiers: Optional[List[str]] = None, author:
Optional[str] = None, author_email: Optional[str] = None, maintainer: Optional[str] = None,
maintainer_email: Optional[str] = None, license: Optional[str] = None, home_page:
Optional[str] = None, download_url: Optional[str] = None, project_urls: Optional[List[str]] =
None, platforms: Optional[List[str]] = None, supported_platforms: Optional[List[str]] = None,
requires_python: Optional[str] = None, requires_dists: Optional[List[str]] = None,
requires_externals: Optional[List[str]] = None, provides_extras: Optional[List[str]] = None,
provides_dists: Optional[List[str]] = None, obsoletes_dists: Optional[List[str]] = None)

__str__()→ str
Return str(self).

15



wheelfile

16 Chapter 3. Metadata classes



CHAPTER

FOUR

EXCEPTIONS

exception wheelfile.BadWheelFileError
The given file cannot be interpreted as a wheel nor fixed.

exception wheelfile.UnnamedDistributionError
Distribution name cannot be deduced from arguments.

17



wheelfile

18 Chapter 4. Exceptions



PYTHON MODULE INDEX

w
wheelfile, ??

19



wheelfile

20 Python Module Index



INDEX

Symbols
__eq__() (wheelfile.MetaData method), 15
__eq__() (wheelfile.WheelData method), 12
__eq__() (wheelfile.WheelRecord method), 11
__init__() (wheelfile.MetaData method), 15
__init__() (wheelfile.WheelData method), 12
__init__() (wheelfile.WheelFile method), 6
__init__() (wheelfile.WheelRecord method), 11
__str__() (wheelfile.MetaData method), 15
__str__() (wheelfile.WheelData method), 12
__str__() (wheelfile.WheelRecord method), 11
__weakref__ (wheelfile.WheelFile attribute), 8
__weakref__ (wheelfile.WheelRecord attribute), 11

A
abi_tag (wheelfile.WheelFile attribute), 5

B
BadWheelFileError, 17
build_tag (wheelfile.WheelFile attribute), 5

C
close() (wheelfile.WheelFile method), 8
closed (wheelfile.WheelFile attribute), 6

D
distname (wheelfile.WheelFile attribute), 5

F
filename (wheelfile.WheelFile attribute), 5

H
hash_algo (wheelfile.WheelRecord property), 11
hash_of() (wheelfile.WheelRecord method), 11

L
language_tag (wheelfile.WheelFile attribute), 5

M
MetaData (class in wheelfile), 12
metadata (wheelfile.WheelFile attribute), 6

module
wheelfile, 1

P
platform_tag (wheelfile.WheelFile attribute), 5

R
record (wheelfile.WheelFile attribute), 5

U
UnnamedDistributionError, 17
update() (wheelfile.WheelRecord method), 11

V
version (wheelfile.WheelFile attribute), 5

W
WheelData (class in wheelfile), 11
wheeldata (wheelfile.WheelFile attribute), 6
wheelfile

module, 1
WheelFile (class in wheelfile), 5
WheelRecord (class in wheelfile), 11
write() (wheelfile.WheelFile method), 8
write_data() (wheelfile.WheelFile method), 9
writestr() (wheelfile.WheelFile method), 9
writestr_data() (wheelfile.WheelFile method), 9

21


	Installation
	Main class
	Metadata classes
	Exceptions
	Python Module Index
	Index

