

wheelfile

API for handling “.whl” files.

Use WheelFile to create or read a wheel.

Managing metadata is done via metadata, wheeldata, and record attributes.
See MetaData, WheelData, and WheelRecord for
documentation of the objects returned by these attributes.

Example

Here’s how to create a simple package under a specific directory path:

with WheelFile('path/to/directory/', mode='w'
 distname="mywheel", version="1") as wf:
 wf.write('path/to/a/module.py', arcname="mywheel.py")

Installation

To be able to use the module, you have to install it first:

pip install wheelfile

Main class

	
class wheelfile.WheelFile(file_or_path: Union[str, pathlib.Path, BinaryIO] = './', mode: str = 'r', *, distname: Optional[str] = None, version: Optional[Union[str, packaging.version.Version]] = None, build_tag: Optional[Union[int, str]] = None, language_tag: Optional[str] = None, abi_tag: Optional[str] = None, platform_tag: Optional[str] = None, compression: int = 8, allowZip64: bool = True, compresslevel: Optional[int] = None, strict_timestamps: bool = True)

	An archive that follows the wheel specification.

Used to read, create, validate, or modify .whl files.

Can be used as a context manager, in which case close() is called upon
exiting the context.

	
filename

	
	If initialized with:
	

	An IO buffer: the filename that the wheel would have after saving
it onto filesystem.

	A path to a directory: the path to the wheel, composed from its
the given path and the filename generated using the parameters
given to __init__.

	A path to a file: that path, even if it is not compliant with the
spec (in lazy mode).

Returned path is not resolved, and so might be relative and/or
contain `../` and `./` segments.

	Type

	str

	
distname

	Name of the distribution (project). Either given to __init__()
explicitly or inferred from its file_or_path argument.

	Type

	str

	
version

	Version of the distribution. Either given to __init__() explicitly or
inferred from its file_or_path argument.

	Type

	packaging.version.Version

	
build_tag

	Distribution’s build number. Either given to __init__() explicitly or
inferred from its file_or_path argument, otherwise None in lazy mode.

	Type

	Optional[int]

	
language_tag

	Interpretter implementation compatibility specifier. See PEP-425 for
the full specification. Either given to __init__() explicitly or
inferred from its file_or_path argument otherwise an empty string in
lazy mode.

	Type

	str

	
abi_tag

	ABI compatibility specifier. See PEP-425 for the full specification.
Either given to __init__() explicitly or inferred from its file_or_path
argument, otherwise an empty string in lazy mode.

	Type

	str

	
platform_tag

	Platform compatibility specifier. See PEP-425 for the full
specification. Either given to __init__() explicitly or inferred from
its file_or_path argument, otherwise an empty string in lazy mode.

	Type

	str

	
record

	Current state of .dist-info/RECORD file.

When reading wheels in lazy mode, if the file does not exist or is
misformatted, this attribute becomes None.

In non-lazy modes this file is always read & validated on
initialization.
In write and exclusive-write modes, written to the archive on close().

	Type

	Optional[WheelRecord]

	
metadata

	Current state of .dist-info/METADATA file.

Values from distname and version are used to provide required
arguments when the file is created from scratch by __init__().

When reading wheels in lazy mode, if the file does not exist or is
misformatted, this attribute becomes None.

In non-lazy modes this file is always read & validated on
initialization.
In write and exclusive-write modes, written to the archive on close().

	Type

	Optional[MetaData]

	
wheeldata

	Current state of .dist-info/WHEELDATA file.

Values from build_tag, language_tag, abi_tag, platform_tag, or
their substitutes inferred from the filename are used to initialize
this object.

When reading wheels in lazy mode, if the file does not exist or is
misformatted, this attribute becomes None.

In non-lazy modes this file is always read & validated on
initialization.
In write and exclusive-write modes, written to the archive on close().

	Type

	Optional[WheelData]

	
distinfo_dirname

	Name of the .dist-info directory inside the archive wheel,
without the trailing slash.

	
data_dirname

	Name of the .data directory inside the archive wheel, without
the trailing slash.

	
closed

	True if the underlying ZipFile object is closed, false otherwise.

	Type

	bool

	
__init__(file_or_path: Union[str, pathlib.Path, BinaryIO] = './', mode: str = 'r', *, distname: Optional[str] = None, version: Optional[Union[str, packaging.version.Version]] = None, build_tag: Optional[Union[int, str]] = None, language_tag: Optional[str] = None, abi_tag: Optional[str] = None, platform_tag: Optional[str] = None, compression: int = 8, allowZip64: bool = True, compresslevel: Optional[int] = None, strict_timestamps: bool = True) → None

	Open or create a wheel file.

In write and exclusive-write modes, if file_or_path is not specified,
it is assumed to be the current directory. If the specified path is a
directory, the wheelfile will be created inside it, with filename
generated using the values given via distname, version,
build_tag, language_tag, abi_tag, and platfrom_tag arguments.
Each of these parameters is stored in a read-only property of the same
name.
If file_or_path is a path to a file, the wheel will be created
under the specified path.

If lazy mode is not specified:

	In read and append modes, the file is validated using validate().
Contents of metadata files inside .dist-info directory are read
and converted into their respective object representations (see
“metadata”, “wheeldata”, and “record” attributes).

	In write and exclusive-write modes, object representations for
each metadata file are created from scratch. They will be written
to each of their respective .dist-info/ files on close().

To skip the validation, e.g. if you wish to fix a misformated wheel,
use lazy mode (‘l’ - see description of the “mode” parameter).

In lazy mode, if the opened file does not contain WHEEL, METADATA, or
RECORD (which is optional as per PEP-627), the attributes corresponding
to the missing data structures will be set to None.

If any of the metadata files cannot be read due to a wrong format, they
are considered missing.

Filename tags are only inferred if the filename contains 5 or 6
segments inbetween ‘-‘ characters. Otherwise, if any tag argument is
omitted, its attribute is set to an empty string.

If the archive root contains a directory with a name ending with
‘.dist-info’, it is considered to be the metadata directory for the
wheel, even if the given/inferred distname and version do not match its
name.

If the archive already contains either one of the aforementioned files,
they are read, but are not checked for consistency. Use validate() to
check whether there are errors, and fix() to fix them.

There are currently 2 classes of errors which completely prevent a well
formatted zip file from being read by this class:

	Unknown/incorrect distribution name/version - when the naming
scheme is violated in a way that prevents inferring these values
and the user hasn’t provided these values, or provided ones that
do not conform to the specifications. In such case, the scope of
functioning features of this class would be limited to that of a
standard ZipFile, and is therefore unsupported.

	When there are multiple .data or .dist-info directories. This
would mean that the class would have to guess which are the
genuine ones - and we refuse the temptation to do that (see “The
Zen of Python”).

In other words, this class is liberal in what it accepts, but very
conservative in what it does (A.K.A. the robustness principle).

Note

Despite all of this, THERE ARE NO GUARANTEES being made as to whether a
misformatted file can be read or fixed by this class, and even if it is
currently, whether it will still be the case in the future versions.

	Parameters

	
	file_or_path – Path to the file to open/create or a file-like object to use.

	mode – See zipfile.ZipFile docs for the list of available modes.

In the read and append modes, the file given has to contain proper
PKZIP-formatted data.

Adding “l” to the mode string turns on the “lazy mode”. This
changes the behavior on initialization (see above), the behavior of
close() (see its docstring for more info), makes the archive
modifying methods refrain from refreshing the record & writing it
to the archive.

Lazy mode should only be used in cases where a misformatted wheels
have to be read or fixed.

	distname – Name of the distribution for this wheelfile.

If omitted, the name will be inferred from the filename given in
the path. If a file-like object is given instead of a path, it will
be inferred from its “name” attribute.

The class requires this information, as it’s used to infer the name
of the directory in the archive in which metadata should reside.

This argument should be understood as an override for the values
calculated from the object given in “file_or_path” argument. It
should only be necessary when a file is read from memory or has a
misformatted name.

Should be composed of alphanumeric characters and underscores only.
Must not be an empty string.

See the description of “distname” attribute for more information.

	version – Version of the distribution in this wheelfile. Follows the same
semantics as “distname”.

The given value must be compliant with PEP-440 version identifier
specification.

See the description of “version” attribute for more information.

	build – Optional build number specifier for the distribution.

See WheelData docstring for information about semantics of this
field.

If lazy mode is not specified, this value must be an integer or a
string that converts to one. Otherwise no checks for this value are
performed.

	language_tag – Language implementation specification. Used to distinguish
between distributions targetted at different versions of
interpreters.

The given value should be in the same form as the ones appearing
in wheels’ filenames.

Defaults to ‘py3’, but only if an unnamed or a directory target
was given.

	abi_tag – In distributions that utilize compiled binaries, specifies the
version of the ABI that the binaries in the wheel are compatible
with.

The given value should be in the same form as the ones appearing
in wheels’ filenames.

Defaults to ‘none’, but only if an unnamed or a directory target
was given.

	platform_tag – Used to specify platforms that the distribution is compatible with.

The given value should be in the same form as the ones appearing
in wheels’ filenames.

Defaults to ‘any’, but only if an unnamed or a directory target
was given.

	compression – Compression method to use. By default zipfile.ZIP_DEFLATED is
used.

See zipfile.ZipFile documentation for the full description. This
argument differs from its ZipFile counterpart in that here it is
keyword-only, and the default value is different.

	allowZip64 – Flag used to indicate whether ZIP64 extensions should be used.

See zipfile.ZipFile documentation for the full description. This
argument differs from its ZipFile counterpart in that here it is
keyword-only.

	compresslevel – Compression level to use when writing to the archive.

See zipfile.ZipFile documentation for the full description. This
argument differs from its ZipFile counterpart in that here it is
keyword-only

	strict_timestamps – When True, files with modification times older than 1980-01-01 or
newer than 2107-12-31 are allowed. Keyword only.

See zipfile.ZipFile documentation for the full description. This
argument differs from its ZipFile counterpart in that here it is
keyword-only.

	Raises

	
	UnnamedDistributionError – Raised if the distname or version cannot be inferred from the
 given arguments.

 E.g. when the path does not contain the version, or the
 file-like object has no “name” attribute to get the filename from,
 and the information wasn’t provided via other arguments.

	BadWheelFileError – Raised if the archive contains multiple ‘.dist-info’ or ‘.data’
 directories.

	zipfile.BadZipFile – If given file is not a proper zip.

	
__weakref__

	list of weak references to the object (if defined)

	
close() → None

	Finalize and close the file.

Writes the rest of the necessary data to the archive, performs one last
validation of the contents (unless the file is open in lazy mode), and
closes the file.

There must not be any handles left open for the zip contents, i.e. all
objects returned by open() or .zip.open() must be closed before
calling this subroutine.

	Raises

	RuntimeError – If there are unclosed content handles.

	
classmethod from_wheelfile(wf: wheelfile.WheelFile, file_or_path: Union[str, pathlib.Path, BinaryIO] = './', mode: str = 'w', *, distname: Union[str, None, wheelfile.WheelFile._Sentinel] = <wheelfile.WheelFile._Sentinel object>, version: Union[str, packaging.version.Version, None, wheelfile.WheelFile._Sentinel] = <wheelfile.WheelFile._Sentinel object>, build_tag: Union[int, str, None, wheelfile.WheelFile._Sentinel] = <wheelfile.WheelFile._Sentinel object>, language_tag: Union[str, None, wheelfile.WheelFile._Sentinel] = <wheelfile.WheelFile._Sentinel object>, abi_tag: Union[str, None, wheelfile.WheelFile._Sentinel] = <wheelfile.WheelFile._Sentinel object>, platform_tag: Union[str, None, wheelfile.WheelFile._Sentinel] = <wheelfile.WheelFile._Sentinel object>, compression: int = 8, allowZip64: bool = True, compresslevel: Optional[int] = None, strict_timestamps: bool = True) → wheelfile.WheelFile

	Recreate wf using different parameters.

Creates a new WheelFile object using data from another, given as
wf, and given constructor parameters. The new object will contain
the same files (including those under .data and .dist-info
directories), with the same timestamps, compression methods,
compression levels, access modes, etc., except:

	.dist-info directory is renamed, if version or distname is
changed.

	.data directory is renamed, if version or distname is
changed.

	METADATA will contain almost all the same information, except
for the fields that were changed via arguments of this method.

	WHEEL will be changed to contain the new tags and build
number. The generator field will be reset to the one given by
WheelData by default: “wheelfile <version>”.

	RECORD is reconstructed in order to accomodate the differences
above.

This can be used to rename a wheel, change its metadata, or add files
to it. It also fixes some common problems of wheel packages, e.g.
unnormalized dist-info directory names.

If any of the metadata files is missing or corrupted in wf, i.e. the
properties metadata, wheeldata, and record of wf are set to
None, new ones with will be created for the new object, using default
values.

All parameters of this method except wf are passed to the new
object’s __init__.

For distname, version, and *_tag arguments, if a parameter is not
given, the value from wf is used. If a default is needed instead, set
the argument to None explicitly.

Even if wf was created using a path to a directory, the default value
used for file_or_path will be the current working directory.

The new WheelFile object must be writable, so by default “w” mode
is used, instead of “r”. If copying wf would result in overwriting
a file or buffer from which wf was created, ValueError will be
raised.

	Parameters

	
	wf – WheelFile object from which the new object should be recreated.

	mode – Mode in which the new WheelFile should be opened. Accepts the
same modes as WheelFile.__init__, except read mode (“r”) is not
allowed.

	distname – Optional argument passed to the new object’s constructor. See
WheelFile.__init__ for the full description. If not specified,
value from wf is used (it is avaialable via property of the same
name). If None is given explicitly, constructor’s default is
used.

	version – Optional argument passed to the new object’s constructor. See
WheelFile.__init__ for the full description. If not specified,
value from wf is used (it is avaialable via property of the same
name). If None is given explicitly, constructor’s default is
used.

	build_tag – Optional argument passed to the new object’s constructor. See
WheelFile.__init__ for the full description. If not specified,
value from wf is used (it is avaialable via property of the same
name). If None is given explicitly, constructor’s default is
used.

	language_tag – Optional argument passed to the new object’s constructor. See
WheelFile.__init__ for the full description. If not specified,
value from wf is used (it is avaialable via property of the same
name). If None is given explicitly, constructor’s default is
used.

	abi_tag – Optional argument passed to the new object’s constructor. See
WheelFile.__init__ for the full description. If not specified,
value from wf is used (it is avaialable via property of the same
name). If None is given explicitly, constructor’s default is
used.

	platform_tag – Optional argument passed to the new object’s constructor. See
WheelFile.__init__ for the full description. If not specified,
value from wf is used (it is avaialable via property of the same
name). If None is given explicitly, constructor’s default is
used.

	compression – Optional argument passed to the new object’s constructor, which in
turn passes them to zipfile.ZipFile - see zipfile docs for full
description on each.

Value from wf is not reused for this parameter.

	allowZip64 – Optional argument passed to the new object’s constructor, which in
turn passes them to zipfile.ZipFile - see zipfile docs for full
description on each.

Value from wf is not reused for this parameter.

	compresslevel – Optional argument passed to the new object’s constructor, which in
turn passes them to zipfile.ZipFile - see zipfile docs for full
description on each.

Value from wf is not reused for this parameter.

	strict_timestamps – Optional argument passed to the new object’s constructor, which in
turn passes them to zipfile.ZipFile - see zipfile docs for full
description on each.

Value from wf is not reused for this parameter.

	Raises

	ValueError – Raised when:
 - Read mode is used (“r”) in mode.
 - Creating the object would result in rewriting the underlying
 buffer of wf (if wf uses an IO buffer).
 - Creating the object would result in rewriting the file on
 which wf operates.

	
infolist() → List[zipfile38.ZipInfo]

	Return a list of ZipInfo objects for each wheel member.

Same as ZipFile.infolist(), but omits objects corresponding to
RECORD, METADATA, and WHEEL files.

	
namelist() → List[str]

	Return a list of wheel members by name, omit metadata files.

Same as ZipFile.namelist(), but omits RECORD, METADATA, and
WHEEL files.

	
write(filename: Union[str, pathlib.Path], arcname: Optional[str] = None, compress_type: Optional[int] = None, compresslevel: Optional[int] = None, *, recursive: bool = True, resolve: bool = True, skipdir: bool = True) → None

	Add the file to the wheel.

Updates the wheel record, if the record is being kept.

	Parameters

	
	filename – Path to the file or directory to add.

	arcname – Path in the archive to assign the file/directory into. If not
given, filename will be used instead. In both cases, the leading
path separators and the drive letter (if any) will be removed.

	compress_type – Same as in zipfile.ZipFile.write. Overrides the compression
parameter given to __init__.

	compresslevel – Same as in zipfile.ZipFile.write. Overrides the compresslevel
parameter given to __init__.

	recursive – Keyword only. When True, if given path leads to a directory, all of
its contents are going to be added into the archive, including
contents of its subdirectories.

If its False, only a directory entry is going to be added, without
any of its contents.

	resolve – Keyword only. When True, and no arcname is given, the path given
to filename will not be used as the arcname (as is the case with
ZipFile.write), but only the name of the file that it points to
will be used.

For example, if you set filename to ../some/other/dir/file,
file entry will be written in the archive root.

Has no effect when set to False or when arcname is given.

	skipdir – Keyword only. Indicates whether directory entries should be skipped
in the archive. Set to True by default, which means that
attempting to write an empty directory will be silently omitted.

	
write_data(filename: Union[str, pathlib.Path], section: str, arcname: Optional[str] = None, compress_type: Optional[int] = None, compresslevel: Optional[int] = None, *, recursive: bool = True, resolve: bool = True, skipdir: bool = True) → None

	Write a file to the .data directory under a specified section.

This method is a handy shortcut for writing into
<dist>-<version>.data/, such that you dont have to generate the path
yourself.

Updates the wheel record, if the record is being kept.

	Parameters

	
	filename – Path to the file or directory to add.

	section – Name of the section, i.e. the directory inside .data/ that the
file should be put into. Sections have special meaning, see PEP-427.
Cannot contain any slashes, nor be empty.

	arcname – Path in the archive to assign the file/directory into, relative to
the directory of the specified data section. If left empty,
filename is used. Leading slashes are stripped.

	compress_type – Same as in zipfile.ZipFile.write. Overrides the compression
parameter given to __init__.

	compresslevel – Same as in zipfile.ZipFile.write. Overrides the compresslevel
parameter given to __init__.

	recursive – Keyword only. When True, if given path leads to a directory, all of
its contents are going to be added into the archive, including
contents of its subdirectories.

If its False, only a directory entry is going to be added, without
any of tis contents.

	resolve – Keyword only. When True, and no arcname is given, the path given
to filename will not be used as the arcname (as is the case with
ZipFile.write), but only the name of the file that it points to
will be used.

For example, if you set filename to ../some/other/dir/file,
file entry will be written in the archive root.

Has no effect when set to False or when arcname is given.

	skipdir – Keyword only. Indicates whether directory entries should be skipped
in the archive. Set to True by default, which means that
attempting to write an empty directory will be silently omitted.

	
write_distinfo(filename: Union[str, pathlib.Path], arcname: Optional[str] = None, compress_type: Optional[int] = None, compresslevel: Optional[int] = None, *, recursive: bool = True, resolve: bool = True, skipdir: bool = True) → None

	Write a file to .dist-info directory in the wheel.

This is a shorthand for write(…) with arcname prefixed with
the .dist-info path. It also ensures that the metadata files critical
to the wheel correctnes (i.e. the ones written into archive on
close()) aren’t being pre-written.

	Parameters

	
	filename – Path to the file or directory to add.

	arcname – Path in the archive to assign the file/directory into. If not
given, filename will be used instead. In both cases, the leading
path separators and the drive letter (if any) will be removed.

This parameter will be prefixed with proper .dist-info path
automatically.

	compress_type – Same as in zipfile.ZipFile.write. Overrides the compression
parameter given to __init__.

	compresslevel – Same as in zipfile.ZipFile.write. Overrides the compresslevel
parameter given to __init__.

	recursive – Keyword only. When True, if given path leads to a directory, all of
its contents are going to be added into the archive, including
contents of its subdirectories.

If its False, only a directory entry is going to be added, without
any of its contents.

	resolve – Keyword only. When True, and no arcname is given, the path given
to filename will not be used as the arcname (as is the case with
ZipFile.write), but only the name of the file that it points to
will be used.

For example, if you set filename to ../some/other/dir/file,
file entry will be written in the .dist-info directory.

Has no effect when set to False or when arcname is given.

	skipdir – Keyword only. Indicates whether directory entries should be skipped
in the archive. Set to True by default, which means that
attempting to write an empty directory will be silently omitted.

	Raises

	ProhibitedWriteError – Raised if the write would result with duplicated WHEEL,
 METADATA, or RECORD files after close() is called.

	
writestr(zinfo_or_arcname: Union[zipfile38.ZipInfo, str], data: Union[bytes, str], compress_type: Optional[int] = None, compresslevel: Optional[int] = None) → None

	Write given data into the wheel under the given path.

Updates the wheel record, if the record is being kept.

	Parameters

	
	zinfo_or_arcname – Specifies the path in the archive under which the data will be
stored.

	data – The data that will be writen into the archive. If it’s a string, it
is encoded as UTF-8 first.

	compress_type – Same as in zipfile.ZipFile.writestr. Overrides the compression
parameter given to __init__. If the first parameter is a
ZipInfo object, the value its compress_type field is also
overriden.

	compresslevel – Same as in zipfile.ZipFile.writestr. Overrides the compresslevel
parameter given to __init__. If the first parameter is a
ZipInfo object, the value its compresslevel field is also
overriden.

	
writestr_data(section: str, zinfo_or_arcname: Union[zipfile38.ZipInfo, str], data: Union[bytes, str], compress_type: Optional[int] = None, compresslevel: Optional[int] = None) → None

	Write given data to the .data directory under a specified section.

This method is a handy shortcut for writing into
<dist>-<version>.data/, such that you dont have to generate the path
yourself.

Updates the wheel record, if the record is being kept.

	Parameters

	
	section – Name of the section, i.e. the directory inside .data/ that the
file should be put into. Sections have special meaning, see PEP-427.
Cannot contain any slashes, nor be empty.

	zinfo_or_arcname – Specifies the path in the archive under which the data will be
stored. This is relative to the path of the section directory.
Leading slashes are stripped.

	data – The data that will be writen into the archive. If it’s a string, it
is encoded as UTF-8 first.

	compress_type – Same as in zipfile.ZipFile.writestr. Overrides the compression
parameter given to __init__. If the first parameter is a
ZipInfo object, the value its compress_type field is also
overriden.

	compresslevel – Same as in zipfile.ZipFile.writestr. Overrides the compresslevel
parameter given to __init__. If the first parameter is a
ZipInfo object, the value its compresslevel field is also
overriden.

	
writestr_distinfo(zinfo_or_arcname: Union[zipfile38.ZipInfo, str], data: Union[bytes, str], compress_type: Optional[int] = None, compresslevel: Optional[int] = None) → None

	Write given data to the .dist-info directory.

This method is a handy shortcut for writing into
<dist>-<version>.dist-info/, such that you dont have to generate the
path yourself.

Updates the wheel record, if the record is being kept.

Does not permit writing into arcpaths of metadata files managed by this
class.

	Parameters

	
	zinfo_or_arcname – Specifies the path in the archive under which the data will be
stored. This is relative to the path of the section directory.
Leading slashes are stripped.

	data – The data that will be writen into the archive. If it’s a string, it
is encoded as UTF-8 first.

	compress_type – Same as in zipfile.ZipFile.writestr. Overrides the compression
parameter given to __init__. If the first parameter is a
ZipInfo object, the value its compress_type field is also
overriden.

	compresslevel – Same as in zipfile.ZipFile.writestr. Overrides the compresslevel
parameter given to __init__. If the first parameter is a
ZipInfo object, the value its compresslevel field is also
overriden.

	Raises

	ProhibitedWriteError – When attempting to write into METADATA, WHEEL, or RECORD.

Metadata classes

	
class wheelfile.WheelRecord(hash_algo: str = 'sha256')

	Contains logic for creation and modification of RECORD files.

Keeps track of files in the wheel and their hashes.

For the full spec, see PEP-376 “RECORD” section, PEP-627,
“The .dist-info directory” section of PEP-427, and
https://packaging.python.org/specifications/recording-installed-packages/.

	
__eq__(other)

	Return self==value.

	
__init__(hash_algo: str = 'sha256')

	

	
__str__() → str

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
property hash_algo: str

	Hash algorithm to use to generate RECORD file entries

	
hash_of(arcpath) → str

	Return the hash of a file in the archive this RECORD describes

	Parameters

	arcpath – Location of the file inside the archive.

	Returns

	String in the form <algorithm>=<base64_str>, where algorithm is the
name of the hashing agorithm used to generate the hash (see
hash_algo), and base64_str is a string containing a base64 encoded
version of the hash with any trailing ‘=’ removed.

	Return type

	str

	
update(arcpath: str, buf: IO[bytes])

	Add a record entry for a file in the archive.

	Parameters

	
	arcpath – Path in the archive of the file that the entry describes.

	buf – Buffer from which the data will be read in HASH_BUF_SIZE chunks.
Must be fresh, i.e. seek(0)-ed.

	Raises

	RecordContainsDirectoryError – If arcpath is a path to a directory.

	
class wheelfile.WheelData(*, generator: str = 'wheelfile 0.0.8', root_is_purelib: bool = True, tags: Union[List[str], str] = 'py3-none-any', build: Optional[int] = None)

	Implements .dist-info/WHEEL file format.

Descriptions of parameters based on PEP-427. All parameters are keyword
only. Attributes of objects of this class follow parameter names.

Note

Wheel-Version, the wheel format version specifier, is unchangeable. Version
“1.0” is used.

	Parameters

	
	generator – Name and (optionally) version of the generator that generated the wheel
file. By default, “wheelfile {__version__}” is used.

	root_is_purelib – Defines whether the root of the wheel file should be first unpacked into
purelib directory (see distutils.command.install.INSTALL_SCHEMES).

	tags – See PEP-425 - “Compatibility Tags for Built Distributions”. Either a
single string denoting one tag or a list of tags. Tags may contain
compressed tag sets, in which case they will be expanded.

By default, “py3-none-any” is used.

	build – Optional build number. Used as a tie breaker when two wheels have the
same version.

	
__eq__(other)

	Return self==value.

	
__init__(*, generator: str = 'wheelfile 0.0.8', root_is_purelib: bool = True, tags: Union[List[str], str] = 'py3-none-any', build: Optional[int] = None)

	

	
__str__() → str

	Return str(self).

	
class wheelfile.MetaData(*, name: str, version: Union[str, packaging.version.Version], summary: Optional[str] = None, description: Optional[str] = None, description_content_type: Optional[str] = None, keywords: Optional[Union[List[str], str]] = None, classifiers: Optional[List[str]] = None, author: Optional[str] = None, author_email: Optional[str] = None, maintainer: Optional[str] = None, maintainer_email: Optional[str] = None, license: Optional[str] = None, home_page: Optional[str] = None, download_url: Optional[str] = None, project_urls: Optional[List[str]] = None, platforms: Optional[List[str]] = None, supported_platforms: Optional[List[str]] = None, requires_python: Optional[str] = None, requires_dists: Optional[List[str]] = None, requires_externals: Optional[List[str]] = None, provides_extras: Optional[List[str]] = None, provides_dists: Optional[List[str]] = None, obsoletes_dists: Optional[List[str]] = None)

	Implements Wheel Metadata format v2.1.

Descriptions of parameters based on
https://packaging.python.org/specifications/core-metadata/. All parameters
are keyword only. Attributes of objects of this class follow parameter
names.

All parameters except “name” and “version” are optional.

Note

Metadata-Version, the metadata format version specifier, is unchangable.
Version “2.1” is used.

	Parameters

	
	name – Primary identifier for the distribution that uses this metadata. Must
start and end with a letter or number, and consists only of ASCII
alphanumerics, hyphen, underscore, and period.

	version – A string that contains PEP-440 compatible version identifier.

Can be specified using packaging.version.Version object, or a string,
where the latter is always converted to the former.

	summary – A one-line sentence describing this distribution.

	description – Longer text that describes this distribution in detail. Can be written
using plaintext, reStructuredText, or Markdown (see
“description_content_type” parameter below).

The string given for this field should not include RFC 822 indentation
followed by a “|” symbol. Newline characters are permitted

	description_content_type – Defines content format of the text put in the “description” argument.
The field value should follow the following structure:

<type/subtype>; charset=<charset>[; <param_name>=<param value> …]

	Valid type/subtype strings are:
	
	text/plain

	text/x-rst

	text/markdown

For charset parameter, the only legal value is UTF-8.

For text/markdown, parameter “variant=<variant>” specifies variant of
the markdown used. Currently recognized variants include “GFM” and
“CommonMark”.

Examples:

Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM

Description-Content-Type: text/markdown

	keywords – List of search keywords for this distribution. Optionally a single
string literal with keywords separated by commas.

Note: despite the name being a plural noun, the specification defines
this field as a single-use field. In this implementation however, the
value of the attribute after instance initialization is a list of
strings, and conversions to and from string follow the spec - they
require a comma-separated list.

	classifiers – List PEP-301 classification values for this distribution, optionally
followed by a semicolon and an environmental marker.

Example of a classifier:

Operating System :: Microsoft :: Windows :: Windows 10

	author – Name and, optionally, contact information of the original author of the
distribution.

	author_email – Email address of the person specified in the “author” parameter. Format
of this field must follow the format of RFC-822 “From:” header field.

	maintainer – Name and, optionally, contact information of person currently
maintaining the project to which this distribution belongs to.

Omit this parameter if the author and current maintainer is the same
person.

	maintainer_email – Email address of the person specified in the “maintainer” parameter.
Format of this field must follow the format of RFC-822 “From:” header
field.

Omit this parameter if the author and current maintainer is the same
person.

	license – Text of the license that covers this distribution. If license
classifier is used, this parameter may be omitted or used to specify the
particular version of the intended legal text.

	home_page – URL of the home page for this distribution (project).

	download_url – URL from which this distribution (in this version) can be downloaded.

	project_urls – List of URLs with labels for them, in the following format:

<label>, <url>

The label must be at most 32 characters.

Example of an item of this list:

Repository, https://github.com/MrMino/wheelfile

	platforms – List of strings that signify supported operating systems. Use only if
an OS cannot be listed by using a classifier.

	supported_platforms – In binary distributions list of strings, each defining an operating
system and a CPU for which the distribution was compiled.

Semantics of this field aren’t formalized by metadata specifications.

	requires_python – PEP-440 version identifier, that specifies the set Python language
versions that this distribution is compatible with.

Some package management tools (most notably pip) use the value of this
field to filter out installation candidates.

Example:

~=3.5,!=3.5.1,!=3.5.0

	requires_dists – List of PEP-508 dependency specifiers (think line-split contents of
requirements.txt).

	requires_externals – List of system dependencies that this distribution requires.

Each item is a string with a name of the dependency optionally followed
by a version (in the same way items in “requires_dists”) are specified.

Each item may end with a semicolon followed by a PEP-496 environment
markers.

	provides_extras – List of names of optional features provided by a distribution. Used to
specify which dependencies should be installed depending on which of
these optional features are requested.

For example, if you specified “network” and “ssh” as optional features,
the following requirement specifier can be used in “requires_externals”
list to indicate, that the “paramiko” dependency should only be
installed when “ssh” feature is requested:

paramiko; extra == “ssh”

or

paramiko[ssh]

If a dependency is required by multiple features, the features can be
specified in a square brackets, separated by commas:

ipython[repl, jupyter_kernel]

Specifying an optional feature without using it in “requires_externals”
is considered invalid.

Feature names “tests” and “doc” are reserved in their semantics. They
can be used for dependencies of automated testing or documentation
generation.

	provides_dists – List of names of other distributions contained within this one. Each
entry must follow the same format that entries in “requires_dists” list
do.

Different distributions may use a name that does not correspond to any
particular project, to indicate a capability to provide a certain
feature, e.g. “relational_db” may be used to say that a project
provides relational database capabilities

	obsoletes_dists – List of names of distributions obsoleted by installing this one,
indicating that they should not coexist in a single environment with
this one. Each entry must follow the same format that entries in
“requires_dists” list do.

	
__eq__(other)

	Return self==value.

	
__init__(*, name: str, version: Union[str, packaging.version.Version], summary: Optional[str] = None, description: Optional[str] = None, description_content_type: Optional[str] = None, keywords: Optional[Union[List[str], str]] = None, classifiers: Optional[List[str]] = None, author: Optional[str] = None, author_email: Optional[str] = None, maintainer: Optional[str] = None, maintainer_email: Optional[str] = None, license: Optional[str] = None, home_page: Optional[str] = None, download_url: Optional[str] = None, project_urls: Optional[List[str]] = None, platforms: Optional[List[str]] = None, supported_platforms: Optional[List[str]] = None, requires_python: Optional[str] = None, requires_dists: Optional[List[str]] = None, requires_externals: Optional[List[str]] = None, provides_extras: Optional[List[str]] = None, provides_dists: Optional[List[str]] = None, obsoletes_dists: Optional[List[str]] = None)

	

	
__str__() → str

	Return str(self).

Exceptions

	
exception wheelfile.BadWheelFileError

	The given file cannot be interpreted as a wheel nor fixed.

	
exception wheelfile.UnnamedDistributionError

	Distribution name cannot be deduced from arguments.

	
exception wheelfile.ProhibitedWriteError

	Writing into given arcname would result in a corrupted package.

Utilities

	
wheelfile.resolved(path: Union[str, pathlib.Path]) → str

	Get the name of the file or directory the path points to.

This is a convenience function over the functionality provided by
resolve argument of WheelFile.write and similar methods. Since
resolve=True is ignored when arcname is given, it is impossible to add
arbitrary prefix to arcname without resolving the path first - and this
is what this function provides.

Using this, you can have both custom arcname prefix and the “resolve”
functionality, like so:

wf = WheelFile(...)
wf.write(some_path, arcname="arc/dir/" + resolved(some_path))

	Parameters

	path – Path to resolve.

	Returns

	The name of the file or directory the path points to.

	Return type

	str

 Python Module Index

 w

 		 	

 		
 w	

 	
 	
 wheelfile	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | U
 | V
 | W

_

 	
 	__eq__() (wheelfile.MetaData method)

 	(wheelfile.WheelData method)

 	(wheelfile.WheelRecord method)

 	__init__() (wheelfile.MetaData method)

 	(wheelfile.WheelData method)

 	(wheelfile.WheelFile method)

 	(wheelfile.WheelRecord method)

 	
 	__str__() (wheelfile.MetaData method)

 	(wheelfile.WheelData method)

 	(wheelfile.WheelRecord method)

 	__weakref__ (wheelfile.WheelFile attribute)

 	(wheelfile.WheelRecord attribute)

A

 	
 	abi_tag (wheelfile.WheelFile attribute)

B

 	
 	BadWheelFileError

 	
 	build_tag (wheelfile.WheelFile attribute)

C

 	
 	close() (wheelfile.WheelFile method)

 	
 	closed (wheelfile.WheelFile attribute)

D

 	
 	data_dirname (wheelfile.WheelFile attribute)

 	
 	distinfo_dirname (wheelfile.WheelFile attribute)

 	distname (wheelfile.WheelFile attribute)

F

 	
 	filename (wheelfile.WheelFile attribute)

 	
 	from_wheelfile() (wheelfile.WheelFile class method)

H

 	
 	hash_algo (wheelfile.WheelRecord property)

 	
 	hash_of() (wheelfile.WheelRecord method)

I

 	
 	infolist() (wheelfile.WheelFile method)

L

 	
 	language_tag (wheelfile.WheelFile attribute)

M

 	
 	MetaData (class in wheelfile)

 	metadata (wheelfile.WheelFile attribute)

 	
 	
 module

 	wheelfile

N

 	
 	namelist() (wheelfile.WheelFile method)

P

 	
 	platform_tag (wheelfile.WheelFile attribute)

 	
 	ProhibitedWriteError

R

 	
 	record (wheelfile.WheelFile attribute)

 	
 	resolved() (in module wheelfile)

U

 	
 	UnnamedDistributionError

 	
 	update() (wheelfile.WheelRecord method)

V

 	
 	version (wheelfile.WheelFile attribute)

W

 	
 	WheelData (class in wheelfile)

 	wheeldata (wheelfile.WheelFile attribute)

 	
 wheelfile

 	module

 	WheelFile (class in wheelfile)

 	WheelRecord (class in wheelfile)

 	
 	write() (wheelfile.WheelFile method)

 	write_data() (wheelfile.WheelFile method)

 	write_distinfo() (wheelfile.WheelFile method)

 	writestr() (wheelfile.WheelFile method)

 	writestr_data() (wheelfile.WheelFile method)

 	writestr_distinfo() (wheelfile.WheelFile method)

 nav.xhtml

 Table of Contents

 		
 wheelfile

_static/plus.png

_static/file.png

_static/minus.png

